Uinta Basin Pneumatic Controller Research Project and Aerial IR Survey

Outline

- Why Uinta Basin
- Overview of Pneumatic Controller Research project
- Overview of Aerial IR Survey project

Why Uinta Basin?

PC Study

- Background
- Study Objectives
- Why Pneumatic Controllers
- What We Know So Far
- How This Study Helps

Background

Groups Involved:

- EPA Office of Research and Development (ORD) and EPA Region 8
- UDAQ Utah Division Of Air Quality
- Ute Tribe Air Program
- BLM, Utah State Office, Vernal Field Office
- EPA ORD contractor Jacobs Technology with subs (executing measurements)
- Cooperating Uinta Operators
- Research Project funded by EPA (ORD)
 - ORD Regional Applied Research Effort (RARE), research needs of EPA Regions
 - ORD Air Climate and Energy Program (ACE)
- This is a research effort focusing on measurements and methods
 - Not part of any enforcement or compliance activity or other EPA program 5
 - Data acquired under ORD research-level quality assurance project plan 2017-004851-00023

Study Objectives

- Focus on pneumatic controllers (PCs) at wellpads
- Improve understanding of PC emissions
 - Is it a PC emission or fugitive/malfunction?
 - Understand intermittent PC operation
 - Acquire PC emission factor (EF) measurement data
- Advance PC activity factor (AF) information
 - Classifications and counts
 - Actuations
- Improve PC emissions measurement methods
- Contribute to Uinta Basin Emissions Inventory development
- Understand the impact of maintenance on PC emissions

Why Pneumatic Controllers?

Large emission source

- 3rd largest VOC contributor (after tanks and glycol dehydrators – WRAP III)
- 1st largest methane contributor (GHGRP-W Onshore Production)

Recent regulatory attention on PCs

- NSPS OOOO requirements on low-bleed (<6 cfh) or no-bleed of gas
- UDAQ pneumatic retrofit rule
- BLM proposed "Waste Prevention, Production Subject to Royalty, and Resource Conservation"

WRAP Phase III Emission Inventory – Uinta Basin

	2012 Emissions					
Description	NOx (tons/year)	VOC (tons/year)	CO (tons/year)	SOx (tons/year)	PM10 (tons/year	
Dehydrator	225	30,665	189	0	17	
Pneumatic devices	0	25,083	0	0	0	
Condensate tank	0	21,719	0	0	0	
Oil Tank	0	20,722	0	0	0	
Pneumatic pumps	0	14,322	0	0	0	
Permitted Sources	3,184	4,355	2,517	8	48	
Unpermitted Fugitives	0	3,212	0	0	0	
Truck Loading of Oil	0	1,391	0	0	0	
Venting - Compressor Startup	0	1,300	0	0	0	
Venting - Compressor Shutdown	0	1,233	0	0	0	
Artificial Lift	3,053	955	34,750	2	136	
Compressor engines	3,169	695	4,236	0	46	
Venting - blowdowns	0	460	G G	0	0	
Truck Loading of Condensate	0	445	0	0	0	
Drill rigs	4,773	362	1,507	3	236	
Venting - initial completions	0	332	0	0	0	
Heaters	1,671	96	1,420	11	132	
Miscellaneous engines	199	63	201	0	1	
Versing - recompletions	0	51	0	0	0	
Workover rigs	271	22	91	0	15	
Gas Plant Truck Loading	0	12	0	0	0	
Condensate tank flaring	2	0	9	0	0	
Dehydrator Flaring	0	0	1	0	0	
Initial completion Flaring	1	G	4	0	0	
Total	16,547	127,495	44,925	24	631	

What We Know So Far

EPA Greenhouse Gas Reporting Program – Subpart W PC counts from GHGRP-W activity data led to increase in GHG Inventory for production PC emission estimate

What We Know So Far

- PC research to-date:
 - UT/EDF Dave Allen et al included a "Rocky Mtn Region" – SW WY, NE CO
 - OIPA OK, counts, engineering calcs
 - Prasino British Columbia, Alberta
- API Standard 4590, Pneumatic Controllers, currently underway
 - Proper classification manufacturers, operators, regulators
 - Measurements

What We Know So Far

Emission Factors being used ...

	Continuous–Low scf/device-hr	Continuous-High scf/device-hr	Intermittent scf/device-hr	Notes			
CDPHE	0.14	12.4	1.72	UT/EDF Study – Rocky Mtn Region. Whole gas.			
ODEQ - PCs	1.05 scf/device-hr			OIPA Study – engr calculations - Whole gas 3.6 devices/well			
ODEQ -	Avg. malfunction rate 50 scf/device-hr x 3% malfunction To account for malfunctions.						
Fugitives	rate x 3.6 device/v	vell x # wells	Emission rate and Malfunc. rate per UT/EDF				
GHGRP-W Western U.S.	1.39	37.3	13.5	Default whole gas factor			

How This Study Helps

- 1) PC emission measurements in Uinta Basin
- 2) Forward discussion on what <u>is</u> and what <u>is not</u> a PC emission
- 3) Improve Uinta Basin activity counts (#PC/well, by function, type ...)
- 4) Improve information on intermittent actuation frequency (to extent possible)
- 5) Improve site-specific gas composition knowledge
- 6) Understand PC malfunction frequency and repair factors
- 7) Advance measurement methods

Aerial IR Survey - Potential

- Background
- Study Objectives
- Why Aerial IR
- Precedence
- Project Plan

2017-004851-00023

Background

- Groups Involved and Funding: BLM UT, EPA Region 8, UDAQ
- UB Emission Inventory Workgroup Phase I VOC emissions ↓ compared to WRAP Ph. III
- Potential for U&O Reservation-specific FIP rulemaking for pre-NSPS OOOO sources
- NEPA evaluations
 - 5 Completed EIS/EA RODs include triggers and requirements for "Enhanced DI&M", but not-yet defined
 - EPA is currently a cooperating agency with BLM for EIS development for three projects to add thousands of O&G wells to UB – discussing mitigation options on existing sources
- UB Pneumatic Controller research project fall 2016+ bottom-up emission measurements

Study Objectives

- Through a collaborative effort of the BLM, EPA, Utah, Ute Tribe, and Operators:
 - Find large releases of hydrocarbon emissions from O&G operations in an efficient and cost effective manner
 - Identify cause of releases
 - Fix releases to reduce emissions and conserve gas prior to winter ozone season
- Inform emission inventory work on the frequency/probability of super-emitters
- Inform policy on mitigation options from characterization of super-emitters

Why Aerial IR Survey in UB

- Air quality challenges in UB
- Emission discrepancy: top-down vs. bottom-up
- Inform emission inventory work underway and future mitigation options
 - O&G emission inventories do not accurately account for super-emitters
 - EI \rightarrow ozone model \rightarrow policy decisions on mitigation
- Super emitters a challenge to find
 - Not fixed in time or space
 - Function of operation & maintenance
 - Many such emission sources not covered by CAA currently, so no reporting
 - Not a function of size of facility UB predominantly small sources
- Reduce VOC emissions by timely identification of malfunctions and fixing them

Precedence of Aerial IR Surveys in O&G

- TCEQ 16 campaigns since 2005
- R6 5 campaigns in 2012-2013
- EDF Aerial IR Surveys of 7 basins

~ 5-10% of facilities had continuous leaks, unintentional gas carry through, or unpermitted releases

1%-14% of facilities w/ overserved HC emissions 6.6% in UB

 LSI contractor - has conducted dozens of flyover campaigns for TCEQ, EPA Regions 6 & 4, Industry and researchers (EDF study) in many different basins across the U.S.

EDF Aerial IR Surveys

% of Wellpad Detections vs.

,% of Well Pad Detections Based on Well Age

% Wellpad Detections vs. Production

EDF Aerial IR Surveys – Key TakeAways

Stochastic processes dominate the occurrence of high emissions

Cowbliguce

- Over 90% of ~500 detected sources from tank vents and thief hatches
- Many correlations statistically significant, but none strong (r ≤ 0.28) demonstrating the dominance of random processes
 - # detected sources from both tank vents and tank hatches was most strongly correlated with pad oil production (r = 0.24 and 0.19, respectively)
 - Non-tank emission sources had almost no relationship with well pad parameters

Project Plan

- Occur in 2016 <u>before</u> winter and potential reservation-specific FIP or BLM Waste Prevention (F&V) regs
- Fly-over with IR camera survey
 - 15 days, 29 "grids", \$105k
 - Cover ~4800 sites (~44% of oil & gas wells)
 - Representative by Operator, age, production volume, well type (incl. abandoned)
 - Cover >50% of compressor stations and gas plants
- Ground-based IR camera survey
 - 24 days, 1 "grid", \$26k
 - Cover ~165 sites
 - For same coverage as fly-over: ~700 days, \$760k

